Last updated: 2018-09-14
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20180618)
The command set.seed(20180618)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 86bd1c0
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: R/.Rhistory
Ignored: analysis/.Rhistory
Ignored: analysis/pipeline/.Rhistory
Untracked files:
Untracked: ..gif
Untracked: .DS_Store
Untracked: R/.DS_Store
Untracked: analysis/.DS_Store
Untracked: analysis/normalization_test.R
Untracked: analysis/pipeline/0_dropseq/
Untracked: analysis/pipeline/1_10X/
Untracked: analysis/pipeline/2_zeisel/
Untracked: analysis/pipeline/3_smallsets/
Untracked: analysis/slsl_10x.Rdata
Untracked: analysis/slsl_dropseq.Rdata
Untracked: analysis/writeup/bibliography.bib
Untracked: analysis/writeup/draft1.aux
Untracked: analysis/writeup/draft1.bbl
Untracked: analysis/writeup/draft1.blg
Untracked: analysis/writeup/draft1.log
Untracked: analysis/writeup/draft1.out
Untracked: analysis/writeup/draft1.pdf
Untracked: analysis/writeup/draft1.synctex.gz
Untracked: analysis/writeup/draft1.tex
Untracked: analysis/writeup/jabbrv-ltwa-all.ldf
Untracked: analysis/writeup/jabbrv-ltwa-en.ldf
Untracked: analysis/writeup/jabbrv.sty
Untracked: analysis/writeup/naturemag-doi.bst
Untracked: analysis/writeup/wlscirep.cls
Untracked: data/unnecessary_in_building/
Untracked: docs/figure/10x_labeled.Rmd/
Untracked: docs/figure/example_10x.Rmd/.DS_Store
Untracked: docs/figure/large.Rmd/
Untracked: dropseq_heatmap.pdf
Untracked: man/correct_detection_rate.Rd
Unstaged changes:
Modified: NAMESPACE
Modified: R/SLSL.R
Modified: R/correct_detection_rate.R
Modified: R/find_markers.R
Modified: analysis/pipeline/.DS_Store
Modified: analysis/writeup/.DS_Store
Modified: data/.DS_Store
Modified: docs/figure/.DS_Store
Deleted: man/correct.detection.rate.Rd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 86bd1c0 | tk382 | 2018-09-14 | wflow_publish(c(“analysis/_site.yml“,”analysis/large.Rmd“,”analysis/small.Rmd“), republish |
load('data/Yan.rda')
X = as.matrix(yan)
genenames = rownames(X)
truelabel = as.numeric(as.factor(ann$cell_type1))
numClust = length(unique(truelabel))
summary = explore_data(X, genenames)
disp = plot_dispersion(X = X,
genenames = genenames,
bins=NA,
median = TRUE)
X = gene_filter(X, genenames, disp,
mean.thresh=c(-Inf, 4000),
dispersion.thresh = c(0.5, Inf))
genenames = X$genenames
X = X$X
X = quantile_normalize(X)
cd = correct_detection_rate(as.matrix(X), det.rate = colMeans(X>0)/nrow(X))
Run SLSL on the log.cpm matrix.
out = SLSL(X, numClust = numClust)
adj.rand.index(out$result, truelabel)
[1] 0.8954618
degenes = de_genes(X, genenames, out$result, top.n=100, plot=6)
head(degenes)
de_genes log10p
1 HDAC9 16.36138
2 STK32B 16.28383
3 FLJ40852 16.19759
4 KPNA7 16.10733
5 MFSD2A 16.10030
6 WEE2 16.02111
bio.markers = find_markers(X, genenames, out$result, out$tsne$Y, top.n = 50, plot.n=3)
bio.markers$plots[[1]]
head(bio.markers$markers[[1]])
clust1_genenames clust1_log10p
1 PDK4 17.15950
2 NEUROD1 15.94980
3 C11orf96 13.93428
4 FLJ37201 12.38675
5 HOXD11 12.18412
6 PCDH10 11.56774
bio.markers$plots[[2]]
head(bio.markers$markers[[2]])
clust2_genenames clust2_log10p
1 C19orf33 19.08016
2 C10orf125 18.53046
3 KRT19 18.03959
4 CRIP1 18.02379
5 C9orf140 17.76193
6 BIN1 17.53935
bio.markers$plots[[3]]
head(bio.markers$markers[[3]])
clust3_genenames clust3_log10p
1 DUX4L2 12.67983
2 DUX4 11.99765
3 DUX4L3 11.13193
4 USP17L2 10.71518
5 DUX4L5 10.49148
6 LOC100127888 10.40254
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.5
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] parallel stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] bindrcpp_0.2.2 gridExtra_2.3
[3] gdata_2.18.0 stargazer_5.2.2
[5] abind_1.4-5 broom_0.5.0
[7] gplots_3.0.1 diceR_0.5.1
[9] Rtsne_0.13 igraph_1.2.2
[11] scatterplot3d_0.3-41 pracma_2.1.4
[13] fossil_0.3.7 shapefiles_0.7
[15] foreign_0.8-71 maps_3.3.0
[17] sp_1.3-1 caret_6.0-80
[19] lattice_0.20-35 reshape_0.8.7
[21] dplyr_0.7.6 ggplot2_3.0.0
[23] irlba_2.3.2 Matrix_1.2-14
[25] quadprog_1.5-5 inline_0.3.15
[27] matrixStats_0.54.0 SCNoisyClustering_0.1.0
loaded via a namespace (and not attached):
[1] nlme_3.1-137 bitops_1.0-6
[3] lubridate_1.7.4 dimRed_0.1.0
[5] rprojroot_1.3-2 tools_3.5.1
[7] backports_1.1.2 R6_2.2.2
[9] KernSmooth_2.23-15 rpart_4.1-13
[11] lazyeval_0.2.1 colorspace_1.3-2
[13] nnet_7.3-12 withr_2.1.2
[15] tidyselect_0.2.4 compiler_3.5.1
[17] git2r_0.23.0 labeling_0.3
[19] caTools_1.17.1.1 scales_0.5.0
[21] sfsmisc_1.1-2 DEoptimR_1.0-8
[23] robustbase_0.93-2 stringr_1.3.1
[25] digest_0.6.15 rmarkdown_1.10
[27] R.utils_2.6.0 pkgconfig_2.0.1
[29] htmltools_0.3.6 rlang_0.2.1
[31] ddalpha_1.3.4 bindr_0.1.1
[33] gtools_3.8.1 mclust_5.4.1
[35] ModelMetrics_1.1.0 R.oo_1.22.0
[37] magrittr_1.5 Rcpp_0.12.18
[39] munsell_0.5.0 R.methodsS3_1.7.1
[41] stringi_1.2.4 whisker_0.3-2
[43] yaml_2.2.0 MASS_7.3-50
[45] plyr_1.8.4 recipes_0.1.3
[47] grid_3.5.1 pls_2.6-0
[49] crayon_1.3.4 splines_3.5.1
[51] knitr_1.20 pillar_1.3.0
[53] reshape2_1.4.3 codetools_0.2-15
[55] stats4_3.5.1 CVST_0.2-2
[57] magic_1.5-8 glue_1.3.0
[59] evaluate_0.11 RcppArmadillo_0.8.600.0.0
[61] data.table_1.11.4 foreach_1.4.4
[63] gtable_0.2.0 purrr_0.2.5
[65] tidyr_0.8.1 kernlab_0.9-26
[67] assertthat_0.2.0 DRR_0.0.3
[69] gower_0.1.2 prodlim_2018.04.18
[71] class_7.3-14 survival_2.42-6
[73] geometry_0.3-6 timeDate_3043.102
[75] RcppRoll_0.3.0 tibble_1.4.2
[77] iterators_1.0.10 workflowr_1.1.1
[79] lava_1.6.2 ipred_0.9-6
This reproducible R Markdown analysis was created with workflowr 1.1.1